Time-Periodic Cooling Of Rayleigh-Benard Convection

FLUIDS(2021)

引用 4|浏览0
暂无评分
摘要
The problem of Rayleigh-Benard's natural convection subjected to a temporally periodic cooling condition is solved numerically by the Lattice Boltzmann method with multiple relaxation time (LBM-MRT). The study finds its interest in the field of thermal comfort where current knowledge has gaps in the fundamental phenomena requiring their exploration. The Boussinesq approximation is considered in the resolution of the physical problem studied for a Rayleigh number taken in the range 10(3) <= Ra <= 10(6) with a Prandtl number equal to 0.71 (air as working fluid). The physical phenomenon is also controlled by the amplitude of periodic cooling where, for small values of the latter, the results obtained follow a periodic evolution around an average corresponding to the formulation at a constant cold temperature. When the heating amplitude increases, the physical phenomenon is disturbed, the stream functions become mainly multicellular and an aperiodic evolution is obtained for the heat transfer illustrated by the average Nusselt number.
更多
查看译文
关键词
Rayleigh-Benard convection, time periodical cooling, Lattice Boltzmann method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要