Saturation Efficiency For Detecting 1550 Nm Photons With A 2 X 2 Array Of Mo0.8si0.2 Nanowires At 2.2 K

PHOTONICS RESEARCH(2021)

引用 9|浏览13
暂无评分
摘要
Amorphous materials are attractive candidates for fabricating the superconducting nanowire single-photon detectors (SNSPDs) due to their superior tolerance and scalability over crystalline niobium nitride. However, the reduced superconducting transition temperature degenerates both operating temperature and saturation efficiency. Herein, the SNSPD (6.5 nm thickness and 50 nm width) based on the amorphous Mo08Si0.2 film with a high optical absorption coefficient demonstrates close-to-unity intrinsic detection efficiency for 1550 nm photons from 75 mK to 2.2 K. Further, a high-performance array SNSPD with optimized 90 nm-width wires is also demonstrated. As-fabricated uniform 4-pixel SNSPD exhibits a saturation plateau for the photon counts at 2.2 K, which overcomes the limitation of operation at low temperature (< 1 K) for traditional amorphous SNSPDs. Coupled with superior intrinsic quantum efficiency, highly efficient photon counts, and low dark count ratio, this detector paves a way for achieving high efficiency and superior yield for large array systems. (C) 2021 Chinese Laser Press
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要