Numerical and Experimental Investigation on the Surface Defect Generation during the Hot Extrusion of Al6063 Alloy

MATERIALS(2021)

引用 4|浏览0
暂无评分
摘要
The surface quality control of extruded products is a critical concern in the home appliance manufacturing industry owing to the increasing need for products with a high surface quality, in addition to the essential mechanical properties of the final product. The underlying issue with achieving high-quality extrusion products is that surface defects, especially those resulting in surface gloss differences, called white line defects, are only observed after surface treatment. In this study, we aim to investigate the cause of white line defect generation on the surface of an extruded product. Accordingly, an experimental extrusion program is established using an L-shaped die that has a noticeable change in its bearing length along the inner corner of its cross-sectional profile. Laboratory-scale experiments were performed for the L-shaped extrusion of homogenized Al 6063 alloy at various ram speeds, in order to induce surface defects, considering the production yield rate required for mass production. Subsequently, the microstructural changes near the surface failure region were investigated using an arbitrary Lagrangian-Eulerian (ALE) technique-based thermomechanical finite element (FE) analysis. To scale-up the defect observation method from laboratory-scale to production-scale manufacturing and confirm the reproducibility of the surface defect, scaled-up L-shaped extrusions were performed in an actual industrial production line. Finally, the potential cause of white line defect generation is discussed by comparing the numerical and metallurgical analyses, including the scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) observations.
更多
查看译文
关键词
extrusion, surface defect, white line, metallurgical analysis, thermomechanical FE simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要