Airway epithelial dysfunction and mesenchymal transition in chronic obstructive pulmonary disease: Role of Oct-4.

Life sciences(2021)

引用 0|浏览17
暂无评分
摘要
The airway epithelium is a dynamic tissue that undergoes slow but constant renewal. Dysregulation of airway epithelial function related to cigarette smoke exposure plays an important role in the pathophysiology of COPD. Oct4 is a transcription factor responsible for maintaining cellular self-renewal and regeneration, and CD146 and CD105/Endoglin are adhesion molecules involved in cell proliferation, differentiation, epithelial-mesenchymal-transition and tissue remodeling. Bronchial biopsy specimens (BBs) were obtained from 7 healthy controls (HC) and 10 COPD and subjected to paraffin embedding; BBs from HC were also used for epithelial cell expansion and pHBEC/ALI (air-liquid interface) culture. pHBEC/ALI were exposed to cigarette smoke extract (CSE) for 7, 14 and 21 days. In BBs, Oct4, CD146 and CD105 were evaluated by immunohistochemistry. In pHBEC/ALI, the expression of Oct4, CD146, CD105 and acetyl-αtubulin was evaluated by Western Blot, MUC5AC and IL-8 measurements by ELISA. The Oct4 epithelial immunoreactivity was lower in COPD than in HC, whilst CD146 and CD105 expression was higher in COPD than in HC. In pHBEC/ALI, Transepithelial Electrical Resistance values, measured over 7 to 21 days of differentiation, decreased by 18% (2.5% CSE) and 29% (5% CSE) compared to untreated samples. Oct4 and acetyl-αtubulin were induced after one-week differentiation and downregulated by CSE in reconstituted epithelium; CD146, CD105, MUC5AC and IL-8 were increased by CSE. Oct4 de-regulation and CD146 and CD105 overexpression, induced by cigarette smoke exposure, might play a role in airway epithelial dysfunction by causing changes in self-renewal and mesenchymal transition mechanisms, leading to alteration of epithelium homeostasis and abnormal tissue remodeling involved in progression of COPD.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要