Competing orders and cascade of degeneracy lifting in doped Bernal bilayer graphene

PHYSICAL REVIEW B(2022)

引用 11|浏览0
暂无评分
摘要
Motivated by recent experiments [H. Zhou et al., Science 375, 774 (2022) and S. C. de la Barrera et al., arXiv:2110.13907], here we propose a general mechanism for valley and/or spin degeneracy lifting of the electronic bands in doped Bernal bilayer graphene, subject to electric displacement (D) fields. A D-field induced layer polarization (LP), when accompanied by a Hubbard repulsion-driven layer antiferromagnet (LAF) and next-nearest-neighbor repulsion-driven quantum anomalous Hall (QAH) orders, lifts the fourfold degeneracy of electronic bands, yielding a quarter metal for small doping, as also observed in ABC trilayer graphene. With the disappearance of the QAH order, electronic bands recover twofold valley degeneracy, thereby forming a conventional or compensated (with majority and minority carriers) half metal at moderate doping, depending on the relative strength of LP and LAF. At even higher doping and for a weak D field only LAF survives and the Fermi surface recovers fourfold degeneracy. We also show that a pure repulsive electronic interaction mediated triplet f -wave pairing emerges from a parent correlated nematic liquid or compensated half metal when an in-plane magnetic field is applied to the system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要