The antibiotic drug trimethoprim suppresses tumour growth and metastasis via targeting Snail

BRITISH JOURNAL OF PHARMACOLOGY(2022)

引用 3|浏览14
暂无评分
摘要
Background and Purpose The zinc finger transcription factor Snail is aberrantly activated in many human cancers and strongly associated with poor prognosis. As a transcription factor, Snail has been traditionally considered an 'undruggable' target. Here, we identified a potent small-molecule inhibitor of Snail, namely trimethoprim, and investigated its potential antitumour effects and the underlying mechanisms. Experimental Approach The inhibitory action of trimethoprim on Snail protein and the related molecular mechanisms were revealed by molecular docking, biolayer interferometry, immunoblotting, immunoprecipitation, qRT-PCR, pull-down and cycloheximide pulse-chase assays. The anti-proliferative and anti-metastatic effects of trimethoprim via targeting Snail were tested in multiple cell-based assays and animal models. Key Results This study identified trimethoprim, an antimicrobial drug, as a potent antitumour agent via targeting Snail. Molecular modelling analysis predicted that trimethoprim directly binds to the arginine-174 pocket of Snail protein. We further discovered that trimethoprim strongly interrupts the interaction of Snail with CREB-binding protein (CBP)/p300, which consequently suppresses Snail acetylation and promotes Snail degradation through the ubiquitin-proteasome pathway. Furthermore, trimethoprim sufficiently inhibited the proliferation, epithelial-mesenchymal transition (EMT) and migration of cancer cells in vitro via specifically targeting Snail. More importantly, trimethoprim effectively reduced Snail-driven tumour growth and metastasis to vital organs such as lung, bone and liver. Conclusions and Implications These findings indicate, for the first time, that trimethoprim suppresses tumour growth and metastasis via targeting Snail. This study provides insights for a better understanding of the anticancer effects of trimethoprim and offers a potential anticancer therapeutic agent for clinical treatment.
更多
查看译文
关键词
drug repurposing, epithelial-mesenchymal transition, Snail, trimethoprim, tumour growth and metastasis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要