Conserving alpha and beta diversity in wood-production landscapes

CONSERVATION BIOLOGY(2022)

引用 10|浏览8
暂无评分
摘要
International demand for wood and other forest products continues to grow rapidly, and uncertainties remain about how animal communities will respond to intensifying resource extraction associated with woody bioenergy production. We examined changes in alpha and beta diversity of bats, bees, birds, and reptiles across wood production landscapes in the southeastern United States, a biodiversity hotspot that is one of the principal sources of woody biomass globally. We sampled across a spatial gradient of paired forest land-uses (representing pre and postharvest) that allowed us to evaluate biological community changes resulting from several types of biomass harvest. Short-rotation practices and residue removal following clearcuts were associated with reduced alpha diversity (-14.1 and -13.9 species, respectively) and lower beta diversity (i.e., Jaccard dissimilarity) between land-use pairs (0.46 and 0.50, respectively), whereas midrotation thinning increased alpha (+3.5 species) and beta diversity (0.59). Over the course of a stand rotation in a single location, biomass harvesting generally led to less biodiversity. Cross-taxa responses to resource extraction were poorly predicted by alpha diversity: correlations in responses between taxonomic groups were highly variable (-0.2 to 0.4) with large uncertainties. In contrast, beta diversity patterns were highly consistent and predictable across taxa, where correlations in responses between taxonomic groups were all positive (0.05-0.4) with more narrow uncertainties. Beta diversity may, therefore, be a more reliable and information-rich indicator than alpha diversity in understanding animal community response to landscape change. Patterns in beta diversity were primarily driven by turnover instead of species loss or gain, indicating that wood extraction generates habitats that support different biological communities.
更多
查看译文
关键词
alternative energy, biodiversity, bioenergy, biomass, community, multispecies, occupancy modeling, resource extraction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要