Using a chemical genetic screen to enhance our understanding of the antimicrobial properties of copper.

METALLOMICS(2022)

引用 4|浏览11
暂无评分
摘要
The competitive toxic and stress-inducing nature of copper necessitates systems that sequester and export this metal from the cytoplasm of bacterial cells. Several predicted mechanisms of toxicity include the production of reactive oxygen species, thiol depletion, DNA, and iron-sulfur cluster disruption. Accompanying these mechanisms include pathways of homeostasis such as chelation, oxidation, and transport. Still, the mechanisms of copper resistance and sensitivity are not fully understood. Furthermore, studies fail to recognize that the response to copper is likely a result of numerous mechanisms, as in the case for homeostasis, in which proteins and enzymes work as a collective to maintain appropriate copper concentrations. In this study, we used the Keio collection, an array of 3985 Escherichia coli mutants, each with a deleted non-essential gene, to gain a better understanding of the effects of prolonged exposure to copper. In short, we recovered two copper homeostatic genes involved in transporting and assembling that are required in mediating prolonged copper stress under the conditions assessed. The gene coding for the protein TolC was uncovered as a sensitive hit, and we demonstrated that tolC, an outer membrane efflux channel, is key in mitigating copper sensitivity. Additionally, the activity of tRNA processing was enriched along with the deletion of several proteins involved in importing generated copper tolerance. Lastly, key genes belonging to central carbon metabolism and nicotinamide adenine dinucleotide biosynthesis were uncovered as tolerant hits. Overall, this study shows that copper sensitivity and tolerance are a result of numerous mechanisms acting in combination within the cell.
更多
查看译文
关键词
copper, tolerance, sensitivity, metal-based antimicrobials, Escherichia coli, TolC
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要