Decoding accelerometry for classification and prediction of critically ill patients with severe brain injury.

Scientific reports(2021)

引用 4|浏览8
暂无评分
摘要
Our goal is to explore quantitative motor features in critically ill patients with severe brain injury (SBI). We hypothesized that computational decoding of these features would yield information on underlying neurological states and outcomes. Using wearable microsensors placed on all extremities, we recorded a median 24.1 (IQR: 22.8-25.1) hours of high-frequency accelerometry data per patient from a prospective cohort (n = 69) admitted to the ICU with SBI. Models were trained using time-, frequency-, and wavelet-domain features and levels of responsiveness and outcome as labels. The two primary tasks were detection of levels of responsiveness, assessed by motor sub-score of the Glasgow Coma Scale (GCSm), and prediction of functional outcome at discharge, measured with the Glasgow Outcome Scale-Extended (GOSE). Detection models achieved significant (AUC: 0.70 [95% CI: 0.53-0.85]) and consistent (observation windows: 12 min-9 h) discrimination of SBI patients capable of purposeful movement (GCSm > 4). Prediction models accurately discriminated patients of upper moderate disability or better (GOSE > 5) with 2-6 h of observation (AUC: 0.82 [95% CI: 0.75-0.90]). Results suggest that time series analysis of motor activity yields clinically relevant insights on underlying functional states and short-term outcomes in patients with SBI.
更多
查看译文
关键词
severe brain injury,brain injury,accelerometry,classification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要