There exist infinitely many kinds of partial separability/entanglement

JOURNAL OF MATHEMATICAL PHYSICS(2022)

引用 0|浏览3
暂无评分
摘要
In tri-partite systems, there are three basic biseparability, A-BC, B-CA, and C-AB, according to bipartitions of local systems. We begin with three convex sets consisting of these basic biseparable states in the three-qubit system, and consider arbitrary iterations of intersections and/or convex hulls of them to get convex cones. One natural way to classify tri-partite states is to consider those convex sets to which they belong or do not belong. This is especially useful to classify partial entanglement of mixed states. We show that the lattice generated by those three basic convex sets with respect to convex hull and intersection has infinitely many mutually distinct members to see that there are infinitely many kinds of three-qubit partial entanglement. To do this, we consider an increasing chain of convex sets in the lattice and exhibit three-qubit Greenberger-Horne-Zeilinger diagonal states distinguishing those convex sets in the chain.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要