Quantum Gaussian filter for exploring ground-state properties

arxiv(2022)

引用 4|浏览8
暂无评分
摘要
Filter methods realize a projection from a superposed quantum state onto a target state, which can be efficient if two states have sufficient overlap. Here we propose a quantum Gaussian filter (QGF) with the filter operator being a Gaussian function of the system Hamiltonian. A hybrid quantum-classical algorithm feasible on near-term quantum computers is developed, which implements the quantum Gaussian filter as a linear combination of Hamiltonian evolution at various times. Remarkably, the linear combination coefficients are determined classically and can be optimized in the postprocessing procedure. Compared to the existing filter algorithms whose coefficients are given in advance, our method is more flexible in practice under given quantum resources with the help of postprocessing on classical computers. We demonstrate the quantum Gaussian filter algorithm for the quantum Ising model with numeral simulations under noises. We also propose an alternative full quantum approach that implements a QGF with an ancillary continuous-variable mode.
更多
查看译文
关键词
quantum,ground-state
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要