谷歌浏览器插件
订阅小程序
在清言上使用

NeuroLISP: High-level symbolic programming with attractor neural networks

Neural Networks(2022)

引用 2|浏览20
暂无评分
摘要
Despite significant improvements in contemporary machine learning, symbolic methods currently outperform artificial neural networks on tasks that involve compositional reasoning, such as goal-directed planning and logical inference. This illustrates a computational explanatory gap between cognitive and neurocomputational algorithms that obscures the neurobiological mechanisms underlying cognition and impedes progress toward human-level artificial intelligence. Because of the strong relationship between cognition and working memory control, we suggest that the cognitive abilities of contemporary neural networks are limited by biologically-implausible working memory systems that rely on persistent activity maintenance and/or temporal nonlocality. Here we present NeuroLISP, an attractor neural network that can represent and execute programs written in the LISP programming language. Unlike previous approaches to high-level programming with neural networks, NeuroLISP features a temporally-local working memory based on itinerant attractor dynamics, top-down gating, and fast associative learning, and implements several high-level programming constructs such as compositional data structures, scoped variable binding, and the ability to manipulate and execute programmatic expressions in working memory (i.e., programs can be treated as data). Our computational experiments demonstrate the correctness of the NeuroLISP interpreter, and show that it can learn non-trivial programs that manipulate complex derived data structures (multiway trees), perform compositional string manipulation operations (PCFG SET task), and implement high-level symbolic AI algorithms (first-order unification). We conclude that NeuroLISP is an effective neurocognitive controller that can replace the symbolic components of hybrid models, and serves as a proof of concept for further development of high-level symbolic programming in neural networks.
更多
查看译文
关键词
Programmable neural networks,Working memory,Symbolic processing,Cognitive control,Compositionality,Associative learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要