Hesperetin derivative-16 attenuates CCl4-induced inflammation and liver fibrosis by activating AMPK/SIRT3 pathway.

European journal of pharmacology(2021)

引用 13|浏览5
暂无评分
摘要
Liver fibrosis, a chronic inflammatory healing reaction, progresses to hepatocirrhosis without effective intervention. Hesperetin derivative (HD-16), a monomer compound derived from hesperitin, exerts anti-inflammatory and hepatoprotective effects against a spectrum of liver diseases. However, the anti-fibrotic potential of HD-16 in liver fibrosis and its underlying mechanism have not yet been elucidated. In this study, we investigated the anti-fibrotic effect of HD-16 on mouse liver fibrosis induced by CCl4 and on LX-2 cells (human immortalized HSCs) stimulated by TGF-β1, in vivo and in vitro. HD-16 exerted an anti-fibrotic effect via regulation of the AMPK/SIRT3 pathway. Pharmacodynamic results showed that HD-16 alleviated the degree of injury and inflammation in CCl4-induced mouse liver fibrosis. Consistently, HD-16 also effectively inhibited the expression of α-SMA, Col1α1, Col3α1, and TIMP-1 in TGF-β1-activated LX-2 cells. Mechanistically, HD-16 promoted SIRT3 expression and activity in fibrotic liver and activated LX-2 cells. Furthermore, SIRT3 depletion attenuated the anti-fibrotic effects of HD-16. Intriguingly, HD-16 increased AMPK phosphorylation, whereas inhibition of SIRT3 expression did not affect AMPK phosphorylation. In contrast, AMPK silencing suppressed SIRT3 expression, suggesting that SIRT3 is a downstream target of AMPK in liver fibrosis. Overall, HD-16 attenuated CCl4-induced liver inflammation and fibrosis by activating the AMPK/SIRT3 pathway, and HD-16 may be a potential anti-fibrotic compound in the treatment of liver fibrosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要