Interleukin-7 receptor alpha mutational activation can initiate precursor B-cell acute lymphoblastic leukemia

NATURE COMMUNICATIONS(2021)

引用 13|浏览26
暂无评分
摘要
Interleukin-7 receptor alpha (IL7Ra) is important for lymphoid cell development but its role in leukaemogenesis is not clear. Here, the authors generate a knock-in murine model to show that activating mutations in IL7Ra can initiate precursor B-cell acute lymphoblastic leukaemia. Interleukin-7 receptor alpha (encoded by IL7R) is essential for lymphoid development. Whether acute lymphoblastic leukemia (ALL)-related IL7R gain-of-function mutations can trigger leukemogenesis remains unclear. Here, we demonstrate that lymphoid-restricted mutant IL7R, expressed at physiological levels in conditional knock-in mice, establishes a pre-leukemic stage in which B-cell precursors display self-renewal ability, initiating leukemia resembling PAX5 P80R or Ph-like human B-ALL. Full transformation associates with transcriptional upregulation of oncogenes such as Myc or Bcl2, downregulation of tumor suppressors such as Ikzf1 or Arid2, and major IL-7R signaling upregulation (involving JAK/STAT5 and PI3K/mTOR), required for leukemia cell viability. Accordingly, maximal signaling drives full penetrance and early leukemia onset in homozygous IL7R mutant animals. Notably, we identify 2 transcriptional subgroups in mouse and human Ph-like ALL, and show that dactolisib and sphingosine-kinase inhibitors are potential treatment avenues for IL-7R-related cases. Our model, a resource to explore the pathophysiology and therapeutic vulnerabilities of B-ALL, demonstrates that IL7R can initiate this malignancy.
更多
查看译文
关键词
Acute lymphocytic leukaemia,Cancer models,Molecular medicine,Oncogenes,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要