A Chemoproteomics Approach to Profile Phospholipase D-Derived Phosphatidyl Alcohol Interactions.

ACS chemical biology(2022)

引用 8|浏览9
暂无评分
摘要
Alcohol consumption leads to formation of phosphatidylethanol (PEth) via the transphosphatidylation activity of phospholipase D (PLD) enzymes. Though this non-natural phospholipid routinely serves as a biomarker of chronic alcoholism, its pathophysiological roles remain unknown. We use a minimalist diazirine alkyne alcohol as an ethanol surrogate to generate clickable, photoaffinity lipid reporters of PEth localization and lipid-protein interactions via PLD-mediated transphosphatidylation. We use these tools to visualize phosphatidyl alcohols in a manner compatible with standard permeabilization and immunofluorescence methods. We also use click chemistry tagging, enrichment, and proteomics analysis to define the phosphatidyl alcohol interactome. Our analysis reveals an enrichment of putative interactors at various membrane locations, and we validate one such interaction with the single-pass transmembrane protein basigin/CD147. This study provides a comprehensive view of the molecular interactions of phosphatidyl alcohols with the cellular proteome and points to future work to connect such interactions to potential pathophysiological roles of PEth.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要