Long term exposure of human gut microbiota with high and low emulsifier sensitivity to soy lecithin in M-SHIME model.

biorxiv(2021)

引用 2|浏览1
暂无评分
摘要
In the context of the potential health hazards related to food processing, dietary emulsifiers have been shown to alter the structure and function of the gut microbial community, both in vivo and in vitro. In mouse models, these emulsifier exposed gut microbiota were shown to contribute to gut inflammation. Several knowledge gaps remain to be addressed though. As such, the impact from a longer timeframe of exposure on the gut microbiota is not known and interindividual variability in microbiome response needs to be measured. To answer these research questions, in this study the faecal microbiota from two individuals, previously selected for high and low emulsifier sensitivity, were exposed to two concentrations of soy lecithin during a 7 day treatment phase in the dynamic mucosal simulator of the human intestinal microbial ecosystem (M-SHIME). The results showed mild effects from soy lecithin on the composition and functionality of these microbial communities, which depended on the original microbial composition. The effects also mostly levelled off after 3 days of exposure. The emulsifier sensitivity for which the microbiota were selected, was preserved. Some potentially concerning effects were also registered: butyrate levels, positively correlating with Faecalibacterium abundance, were lowered by soy lecithin. Also the abundance of the beneficial Bifidobacterium genus was lowered, while the abundance of the notorious unclassified Enterobacteriaceae was increased. Within the family of the unclassified Lachnospiraceae, several genera were either suppressed or stimulated. The effects that these microbial alterations would have on a living host is not yet certain, especially given the fact that large fractions of soy lecithins constituents can be absorbed. Nevertheless, choline and phosphatidylcholine, both primary and absorbable constituents of soy lecithin, have recently been linked to cardiovascular disease via the generation of TMA by the gut microbiota. Further studies that validate our findings and link them to potential health outcomes are thus justified. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要