Surfactant aggregate size distributions above and below the critical micelle concentration

JOURNAL OF CHEMICAL PHYSICS(2021)

引用 4|浏览6
暂无评分
摘要
Aggregate size distributions in an aqueous solution containing either charged or neutral surfactants are investigated using Raman multivariate curve resolution (Raman-MCR) spectroscopy and analyzed with the aid of a multi-aggregation chemical potential surface (MCPS) modeling strategy. Total least squares decompositions of the concentration-dependent Raman-MCR spectra are used to quantify the free and micelle surfactant populations, and the surfactant's C-H stretch frequency is used as a measure of its average aggregation state. MCPS predictions relate the experimental measurements to the underlying surfactant aggregate size distribution by fitting either the component concentrations or the average C-H frequency to MCPS predictions, and thus determine the critical micelle concentration (CMC) and estimate the corresponding micelle size and polydispersity. The Raman-MCR spectra of aqueous 1,2-hexanediol, sodium octanoate, and sodium dodecyl sulfate, measured both below and above CMC, provide critical tests of the assumed functional form of the MCPS and the presence of low-order premicellar aggregates. Our results indicate that the low-order aggregate population gradually emerges as the CMC is approached and then remains nearly concentration-independent after the appearance of micelles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要