Direct inhibition of phosphate transport by immune signaling in Arabidopsis

CURRENT BIOLOGY(2022)

引用 19|浏览15
暂无评分
摘要
Soil availability of inorganic ortho-phosphate (PO43-, P-i) is a key determinant of plant growth and fitness.(1) Plants regulate the capacity of their roots to take up inorganic phosphate by adapting the abundance of H+-coupled phosphate transporters of the PHOSPHATE TRANSPORTER 1 (PHT1) family(2) at the plasma membrane (PM) through transcriptional and post-translational changes driven by the genetic network of the phosphate starvation response (PSR).(3-8) Increasing evidence also shows that plants integrate immune responses to alleviate phosphate starvation stress through the association with beneficial microbes.(9-11) Whether and how such phosphate transport is regulated upon activation of immune responses is yet uncharacterized. To address this question, we first developed quantitative assays based on changes in the electrical PM potential to measure active P-i transport in roots in real time. By inserting micro-electrodes into bulging root hairs, we were able to determine key characteristics of phosphate transport in intact Arabidopsis thaliana (hereafter Arabidopsis) seedlings. The fast P-i-induced depolarization observed was dependent on the activity of the major phosphate transporter PHT1;4. Notably, we observed that this PHT1;4-mediated phosphate uptake is repressed upon activation of pattern-triggered immunity. This inhibition depended on the receptor-like cytoplasmic kinases BOTRYTIS-INDUCED KINASE 1 (BIK1) and PBS1-LIKE KINASE 1 (PBL1), which both phosphorylated PHT1;4. As a corollary to this negative regulation of phosphate transport by immune signaling, we found that PHT1;4-mediated phosphate uptake normally negatively regulates anti-bacterial immunity in roots. Collectively, our results reveal a mechanism linking plant immunity and phosphate homeostasis, with BIK1/PBL1 providing a molecular integration point between these two important pathways.
更多
查看译文
关键词
PHT1,electrophysiology,kinase,phosphate,plant immunity,root microbiome
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要