Sequence Conservation, Domain Architectures, and Phylogenetic Distribution of the HD-GYP Type c-di-GMP Phosphodiesterases

JOURNAL OF BACTERIOLOGY(2022)

引用 11|浏览9
暂无评分
摘要
The HD-GYP domain, named after two of its conserved sequence motifs, was first described in 1999 as a specialized version of the widespread HD phosphohydrolase domain that had additional highly conserved amino acid residues. Domain associations of HD-GYP indicated its involvement in bacterial signal transduction and distribution patterns of this domain suggested that it could serve as a hydrolase of the bacterial second messenger c-di-GMP, in addition to or instead of the EAL domain. Subsequent studies confirmed the ability of various HD-GYP domains to hydrolyze c-di-GMP to linear pGpG and/or GMP. Certain HD-GYP-containing proteins hydrolyze another second messenger, cGAMP, and some HD-GYP domains participate in regulatory protein-protein interactions. The recently solved structures of HD-GYP domains from four distinct organisms clarified the mechanisms of c-di-GMP binding and metal-assisted hydrolysis. However, the HD-GYP domain is poorly represented in public domain databases, which causes certain confusion about its phylogenetic distribution, functions, and domain architectures. Here, we present a refined sequence model for the HD-GYP domain and describe the roles of its most conserved residues in metal and/or substrate binding. We also calculate the numbers of HD-GYPs encoded in various genomes and list the most common domain combinations involving HD-GYP, such as the RpfG (REC-HD-GYP), Bd1817 (DUF3391-HD-GYP), and PmGH (GAF-HD-GYP) protein families. We also provide the descriptions of six HD-GYP-associated domains, including four novel integral membrane sensor domains. This work is expected to stimulate studies of diverse HD-GYP-containing proteins, their N-terminal sensor domains and the signals to which they respond.
更多
查看译文
关键词
bacteria, virulence, biofilm, c-di-GMP, c-di-AMP, signal transduction, phosphodiesterase, biofilms, protein domain, sequence alignment, virulence factors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要