Multi T1-weighted contrast imaging and T1 mapping with Compressed sensing FLAWS at 3T

bioRxiv(2021)

引用 0|浏览3
暂无评分
摘要
The Fluid And White matter Suppression (FLAWS) MRI sequence allows for the acquisition of multiple T1-weighted contrasts in a single sequence acquisition. However, its acquisition time is prohibitive for use in clinical practice when the k-space is linearly downsampled and reconstructed using the Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) technique. This study proposes a FLAWS sequence optimization tailored to allow for the acquisition of FLAWS images with a Cartesian phyllotaxis k-space undersampling and compressed sensing (CS) reconstruction at 3T. The CS FLAWS sequence parameters were determined using a method previously employed to optimize FLAWS imaging at 1.5T and 7T. In-vivo experiments show that the proposed CS FLAWS optimization allows to reduce the FLAWS sequence acquisition time from 8 mins to 6 mins without decreasing the FLAWS image quality. In addition, this study demonstrates for the first time that T1-weighted imaging with low B1 sensitivity and T1 mapping can be performed with the FLAWS sequence at 3T for both GRAPPA and CS reconstructions. The FLAWS T1 mapping was validated using in-silico, in-vitro and in-vivo experiments with comparison against the inversion recovery turbo spin echo and MP2RAGE T1 mappings. These new results suggest that the recent advances in FLAWS imaging allow to combine the MP2RAGE imaging benefits (T1-weigthed imaging with low B1 sensitivity and T1 mapping) and with the previous version of FLAWS imaging benefits (multi T1-weighted contrast imaging) in a single 6 mins sequence acquisition. ![Figure][1] ### Competing Interest Statement Tobias Kober is fully employed at Siemens Healthcare, Switzerland. None of the other authors has any conflict of interest to disclose. [1]: pending:yes
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要