Dissecting the Mechanisms of Hepcidin and BMP-SMAD Pathway Regulation By FKBP12

Blood(2021)

引用 1|浏览8
暂无评分
摘要
The BMP-SMAD pathway is activated when a dimeric ligand (BMP) interacts with a dimeric serine threonine kinase receptor (BMPRII) and triggers the activation of a dimeric BMP type I receptor (BMPRI). Catalytically active BMPRIs phosphorylate SMAD1/5/8 that, upon SMAD4 binding, translocate to the nucleus to regulate the expression of BMP target genes, including hepcidin. Hepcidin is the main regulator of iron homeostasis that controls body iron levels by binding and blocking the sole iron exporter ferroportin. In agreement, hepcidin expression is homeostatically activated by serum and liver iron, and its deficiency is a common hallmark of Hereditary Hemochromatosis (HH) and the major cause of iron overload in beta thalassemia. The components of the BMP-SMAD pathway relevant for hepcidin regulation are ALK2 and ALK3 (BMPRI); BMPR2 and ACVR2A (BMPRII), BMP2 and BMP6 (BMP ligands). Recently, we have identified the immunophilin FKBP12 as an inhibitor of hepcidin and demonstrated that FKBP12 binds ALK2 to avoid ligand-independent activation of the BMP-SMAD pathway.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要