GBT021601, a Next Generation HbS Polymerization Inhibitor: Results of Safety, Tolerability, Pharmacokinetics and Pharmacodynamics in Adults Living with Sickle Cell Disease and Healthy Volunteers

Blood(2021)

引用 3|浏览1
暂无评分
摘要
Background: Sickle cell disease (SCD) is caused by polymerization of sickle hemoglobin (HbS), resulting in red blood cell (RBC) sickling, RBC destruction, vaso-occlusion and end-organ damage. GBT021601 is an oral, small molecule, next-generation HbS polymerization inhibitor. Similar to voxelotor, the first generation HbS polymerization inhibitor, GBT021601 increases hemoglobin-oxygen (Hb-O2) affinity and stabilizes hemoglobin (Hb) in the oxy-hemoglobin (oxyHb) state, thereby inhibiting polymerization of HbS in RBCs. The fraction of Hb bound to drug - (Hb occupancy) approximates the oxyHb molecules per RBC. Compared to voxelotor, GBT021601 has the potential to achieve higher Hb occupancies. GBT021601 achieves greater exposures per dose and is more potent as measured by improvements in hematological parameters in an in vivo SCD mouse model (Dufu, Kobina 2020). We hypothesized that GBT021601 would achieve a substantial reduction in RBC hemolysis and increase in hemoglobin while maintaining a favorable safety profile. We therefore explored safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) in healthy volunteer participants (HVs) and adults living with SCD.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要