Large field of view-spatially resolved transcriptomics at nanoscale resolution

semanticscholar(2021)

引用 41|浏览20
暂无评分
摘要
High-throughput profiling of in situ gene expression represents a major advance towards the systematic understanding of tissue complexity. Applied with enough capture area and high sample throughput it will help to define the spatio-temporal dynamics of gene expression in tissues and organisms. Yet, current technologies have considerable bottlenecks that limit widespread application. Here, we have combined DNA nanoball (DNB) patterned array chips and in situ RNA capture to develop Stereo-seq (Spatio-Temporal Enhanced REsolution Omics-sequencing). This approach allows high sample throughput transcriptomic profiling of histological sections at unprecedented (nanoscale) resolution with areas expandable to centimeter scale, high sensitivity and homogenous capture rate. As proof of principle, we applied Stereo-seq to the adult mouse brain and sagittal sections of E11.5 and E16.5 mouse embryos. Thanks to its unique features and amenability to additional modifications, Stereo-seq can pave the way for the systematic spatially resolved-omics characterization of tissues and organisms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要