Time-resolved structural analysis of an RNA-cleaving DNA catalyst

NATURE(2021)

引用 63|浏览14
暂无评分
摘要
The 10–23 DNAzyme is one of the most prominent catalytically active DNA sequences 1 , 2 . Its ability to cleave a wide range of RNA targets with high selectivity entails a substantial therapeutic and biotechnological potential 2 . However, the high expectations have not yet been met, a fact that coincides with the lack of high-resolution and time-resolved information about its mode of action 3 . Here we provide high-resolution NMR characterization of all apparent states of the prototypic 10–23 DNAzyme and present a comprehensive survey of the kinetics and dynamics of its catalytic function. The determined structure and identified metal-ion-binding sites of the precatalytic DNAzyme–RNA complex reveal that the basis of the DNA-mediated catalysis is an interplay among three factors: an unexpected, yet exciting molecular architecture; distinct conformational plasticity; and dynamic modulation by metal ions. We further identify previously hidden rate-limiting transient intermediate states in the DNA-mediated catalytic process via real-time NMR measurements. Using a rationally selected single-atom replacement, we could considerably enhance the performance of the DNAzyme, demonstrating that the acquired knowledge of the molecular structure, its plasticity and the occurrence of long-lived intermediate states constitutes a valuable starting point for the rational design of next-generation DNAzymes.
更多
查看译文
关键词
Biocatalysis,DNA,Molecular conformation,Solution-state NMR,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要