Heat capacity of nanocrystalline Yb2O3

CERAMICS INTERNATIONAL(2022)

引用 5|浏览5
暂无评分
摘要
A study of the structural, Raman scattering and thermodynamic properties of a nanocrystalline ceramic rare earth oxide Yb2O3 and its bulk counterpart is reported. The nanosized sample was obtained by mechanical milling of bulk Yb2O3 (99.998%, high purity powder). The Rietveld analysis of the X-ray diffraction data indicates the presence of nanoparticles with a mean grain size of 12 +/- 1 nm after 75 h of milling time. The crystallographic structure within nanoparticles is cubic Ia-3 and the lattice parameter a = 10.455 +/- 0.002 angstrom. The nanocrystalline structure is confirmed by the evaluation of transmission electron microscopy images, showing a size distribution with a mean size D-TEM = 8 +/- 2 nm. Measurements of the specific heat (2 K-300 K) reveal an excess contribution respect to the unmilled (bulk) compound in the high temperature region above 70 K. At lower temperatures the results are consistent with a drastic change of the antiferromagnetic contribution (ordered below T-N = 2.2 K) as a result of the magnetic disorder arising from the size reduction process. The specific heat above T-N for the bulk and nanocrystalline samples are explained by the interplay among the phonon contribution, crystalline field and the presence of anharmonic effects. In the nanocrystalline state, broadening and shifts of the contribution of phonon modes to the Raman spectra, and a further reinforcement of the anharmonic contribution are found.
更多
查看译文
关键词
Milling,X-ray methods,Electron microscopy,Thermal properties,Yb2O3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要