谷歌浏览器插件
订阅小程序
在清言上使用

Distinct Roles of Ph and Organic Ligands in the Dissolution of Goethite by Cysteine

Journal of Environmental Sciences/Journal of environmental sciences(2022)

引用 8|浏览20
暂无评分
摘要
Electron shuttles such cysteine play an important role in Fe cycle and its availability in soils, while the roles of pH and organic ligands in this process are poorly understood. Herein, the reductive dissolution process of goethite by cysteine were explored in the presence of organic ligands. Our results showed that cysteine exhibited a strong reactivity towards goethite - a typical iron minerals in paddy soils with a rate constant ranging from 0.01 to 0.1 hr-1. However, a large portion of Fe(II) appeared to be "structural species" retained on the surface. The decline of pH was favorable to generate more Fe(II) ions and enhancing tendency of Fe(II) release to solution. The decline of generation of Fe(II) by increasing pH was likely to be caused by a lower redox potential and the nature of cysteine pH-dependent adsorption towards goethite. Interestingly, the co-existence of oxalate and citrate ligands also enhanced the rate constant of Fe(II) release from 0.09 to 0.15 hr-1; nevertheless, they negligibly affected the overall generation of Fe(II) in opposition to the pH effect. Further spectroscopic evidence demonstrated that two molecules of cysteine could form disulfide bonds (S-S) to generate cystine through oxidative dehydration, and subsequently, inducing electron transfer from cysteine to the structural Fe(III) on goethite; meanwhile, those organic ligands act as Fe(II) "strippers". The findings of this work provide new insights into the understanding of the different roles of pH and organic ligands on the generation and release of Fe induced by electron shuttles in soils.
更多
查看译文
关键词
Electron transfer,Reductive dissolution,Iron cycling,Organic ligands
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要