Error estimates for Galerkin finite element methods for the Camassa–Holm equation

semanticscholar(2020)

引用 0|浏览0
暂无评分
摘要
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. We consider the Camassa–Holm (CH) equation, a nonlinear dispersive wave equation that models one-way propagation of long waves of moderately small amplitude. We discretize in space the periodic initial-value problem for CH (written in its original and in system form), using the standard Galerkin finite element method with smooth splines on a uniform mesh, and prove optimal-order L2-error estimates for the semidiscrete approximation. Using the fourth-order accurate, explicit, “classical” Runge–Kutta scheme for time-stepping, we construct a highly accurate, stable, fully discrete scheme that we employ in numerical experiments to approximate solutions of CH, mainly smooth travelling waves and nonsmooth solitons of the ‘peakon’ type.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要