Attribution Evaluation with User Matched Paths

Gil Tabak, Jon Vaver,Qixuan Feng

semanticscholar(2021)

引用 0|浏览4
暂无评分
摘要
Many digital advertisers continue to rely on attribution models to estimate the effectiveness of their marketing spend, allocate budget, and guide bidding decisions for real time auctions. The work described in this paper builds on previous efforts to better understand the capabilities and limitations of attribution models using simulated path data with experiment-based ground truth. While previous efforts were based on a generic specification of user path characteristics (e.g., ad channels considered, observed events included, and the transition rates between observed events), here we generalize the process to include a pre-analysis optimization step that matches the characteristics of the simulated path data with a set of reference path data from a particular advertiser. An attribution model analysis conducted with path-matched data is more relevant and applicable to an advertiser than generic path data. We demonstrate this path-fitting process using data from Booking.com. The simulated matched paths are used to demonstrate a few key capabilities and limitations for several position-based attribution models.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要