Low curvature activations reduce overfit-

semanticscholar(2021)

引用 0|浏览0
暂无评分
摘要
Adversarial training is one of the most effective defenses against adversarial attacks. Previous works suggest that overfitting is a dominant phenomenon in adversarial training leading to a large generalization gap between test and train accuracy in neural networks. In this work, we show that the observed generalization gap is closely related to the choice of the activation function. In particular, we show that using activation functions with low (exact or approximate) curvature values has a regularization effect that significantly reduces both the standard and robust generalization gaps in adversarial training. We observe this effect for both differentiable/smooth activations such as Swish as well as non-differentiable/non-smooth activations such as LeakyReLU. In the latter case, the “approximate” curvature of the activation is low. Finally, we show that for activation functions with low curvature, the double descent phenomenon for adversarially trained models does not occur.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要