Deep learning-based quantitative optoacoustic tomography of deep tissues in the absence of labeled experimental data

OPTICA(2022)

引用 19|浏览8
暂无评分
摘要
Deep learning (DL) shows promise for quantitating anatomical features and functional parameters of tissues in quantitative optoacoustic tomography (QOAT), but its application to deep tissue is hindered by a lack of ground truth data. We propose DL-based "QOAT-Net," which functions without labeled experimental data: a dual-path convolutional network estimates absorption coefficients after training with data-label pairs generated via unsupervised "simulation-to-experiment" data translation. In simulations, phantoms, and ex vivo and in vivo tissues, QOAT-Net affords quantitative absorption images with high spatial resolution. This approach makes DL-based QOAT and other imaging applications feasible in the absence of ground truth data. (C) 2022 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要