Supplementary material to "Eruptive history and 40Ar/39Ar geochronology of the Milos volcanic field, Greece"

Geochronology(2020)

引用 0|浏览0
暂无评分
摘要
High-resolution geochronology is essential for determining the growth rate of volcanoes, which is one of the key factors for establishing the periodicity of volcanic eruptions. However, there are less high-resolution eruptive histories (> 106 years) determined for long-lived submarine arc volcanic complexes than for subaerial complexes, since submarine volcanoes are far more difficult to observe than subaerial ones. In this study, high-resolution geochronology and major-element data are presented for the Milos volcanic field (VF) in the South Aegean Volcanic Arc, Greece. The Milos VF has been active for over 3 Myr, and the first 2 × 106 years of its eruptive history occurred in a submarine setting that has been emerged above sea level. The long submarine volcanic history of the Milos VF makes it an excellent natural laboratory to study the growth rate of a long-lived submarine arc volcanic complex. This study reports 21 new high-precision 40Ar/39Ar ages and major-element compositions for 11 volcanic units of the Milos VF. This allows us to divide the Milos volcanic history into at least three periods of different long-term volumetric volcanic output rate (Qe). Periods I (submarine, ∼ 3.3–2.13 Ma) and III (subaerial, 1.48 Ma–present) have a low Qe of 0.9 ± 0.5 × 10−5 and 0.25 ± 0.05 × 10−5 km3 yr−1, respectively. Period II (submarine, 2.13–1.48 Ma) has a 3–12 times higher Qe of 3.0 ± 1.7 × 10−5 km3 yr−1. The Qe of the Milos VF is 2–3 orders of magnitude lower than the average for rhyolitic systems and continental arcs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要