Mesoporous Weaved Turbostratic Nanodomains Enable Stable Na plus Ion Storage and Micropore Filling is Revealed to be More Unsafe than Adsorption and Deintercalation

Manikandan Palanisamy, Ramakrishnan Perumal,Vilas G. Pol

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 2|浏览2
暂无评分
摘要
Advanced wave-shape non-graphitizable carbon sheets are derived, comprising mesoporous weaved turbostratic micropore enabled stable Na+ ion storage. The non-graphitizable amorphous characteristics are determined from the obtained two broad diffraction peaks at 22.7 degrees and 43.8 degrees. The observed D-band at 1325 cm-1 and G-band at 1586 cm-1 confirm the disordered graphitic structure, attributed to the measured specific surface area of 54 m2 g-1. Mesoporous weaved wave-shape carbon sheet architecture is confirmed by surface morphological studies, showing lattice fringes of disordered graphitic structures and dispersed ring patterns for the non-crystalline characteristics. The predominant stable redox peak at 0.014 V/0.185 V and the broader rectangular shape between 0.9 and 0.15 V depict the adsorption-micropore filling mechanism. The mesoporous hard carbon sheet delivers discharge-charge capacities of 450/311 mAh g-1 (1st cycle) and 263/267 mAh g-1 (250th cycle) at 25 mA g-1, exhibiting a superior anode for sodium-ion batteries. Besides, in situ multimode calorimetry results disclose that the micropore filling Na+ ion storage shows a higher released total heat energy of 721 J g-1 than the adsorption (471 J g-1). Ultimately, differential scanning calorimetry analysis of micropore filling Na+ ion storage (discharged state at 0.01 V) has revealed a predominant exothermic peak at 156 degrees C with the highest released total heat energy of 2183 J g-1 compared to adsorption (553 J g-1) and deintercalation (85 J g-1), indicating that micropore filling status is more unsafe than the adsorption and deintercalation for SIBs.
更多
查看译文
关键词
wave-shape hard carbon sheet, sodium-ion storage, adsorption and micropore filling mechanism, stable discharge-charge cycle, sodium-ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要