谷歌浏览器插件
订阅小程序
在清言上使用

Sulfide with Oxygen-Rich Carbon Network for Good Lithium-Storage Kinetics.

ACS nano(2021)

引用 16|浏览9
暂无评分
摘要
Transition metal sulfides are of great interest as electrode material for alkali metal-ion batteries due to their high theoretical capacity. However, sluggish ion migration and electron transfer kinetics lead to poor cycling stability and rate performance, which hinders their practical applications. Herein, we develop a two-step localized carbonization and sulfurization method to construct a CoS2 composite material (CoS2@CNTs@C) from an in situ integrated zeolitic imidazolate framework (ZIF-67) and multiwalled carbon nanotube precursor (ZIF-67@CNTs). The as-prepared CoS2@CNTs@C composites with a nanoscale carbon skeleton inherit a large specific surface area and suitable nanopore size distribution from ZIF-67 and incredibly abundant oxygenated functional groups from CNTs. The theoretical calculation and material characterization demonstrate that the oxygenated functional groups on the porous carbon networks accelerate lithium-ion diffusion and electron transfer and especially electrocatalyze the progressive conversion of Li2S6 to the final product Li2S. Meanwhile, the three-dimensional conductive network guarantees the conductive and structural stability of CoS2@CNTs@C during the repeated lithium-storage process. Therefore, the CoS2@CNTs@C electrode material can deliver an initial discharge capacity of 1282.3 mA h g-1 at 200 mA g-1 with a high Coulombic efficiency of 93.5% and a reversible capacity of 558.8 mA h g-1 at 2000 mA g-1 in 600 cycles with a high capacity retention of 96.1%.
更多
查看译文
关键词
lithium-ion batteries,sulfide nanoparticles,oxygenated functional group,carbon nanotubes,metal-organic frameworks,electrocatalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要