A Nanodrug Coated with Membrane from Brain Microvascular Endothelial Cells Protects against Experimental Cerebral Malaria

NANO LETTERS(2022)

引用 11|浏览10
暂无评分
摘要
Human malaria is a global life-threatening infectious disease. Cerebral malaria (CM) induced by Plasmodium falciparum parasites accounts for 90% of malaria deaths. Treating CM is challenging due to inadequate treatment options and the development of drug resistance. We describe a nanoparticle formulation of the antimalarial drug dihydroartemisinin that is coated in a biomimetic membrane derived from brain microvascular endothelial cells (BMECs) and test its therapeutic efficacy in a mouse model of experimental cerebral malaria (ECM). The membrane-coated nanoparticle drug has a prolonged drug-release profile and enhanced dual targeting killing efficacy toward parasites residing in red blood cells (iRBCs) and iRBCs obstructed in the BMECs (for both rodent and human). In a mice ECM model, the nanodrug protects the brain, liver, and spleen from infection-induced damage and improves the survival rate of mice. This so-called nanodrug offers new insight into engineering nanoparticle-based therapeutics for malaria and other parasitic pathogen infections.
更多
查看译文
关键词
malaria, experimental cerebral malaria, cell-membrane coating, dihydroartemisinin, nanodrug
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要