Determination of multiple organic flame retardants in maricultural water using High-volume/High-throughput Solid-phase extraction followed by liquid/gas chromatography tandem mass spectrometry.

Journal of chromatography. A(2021)

引用 4|浏览9
暂无评分
摘要
A rapid and efficient analytical method is proposed and optimized for the enrichment, extraction and instrument analysis of four typical organic flame retardants (OFRs), including organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDs) and dechlorane compounds (Dechloranes) in maricultural waters using High-volume/High-throughput Solid-phase extraction with in-situ ultrasonic technique followed by high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and gas chromatography tandem mass spectrometry (GC-MS) instrumental detection. The optimized pretreatment conditions were that the analytes were enriched by XAD-2 resins and eluted repeatedly with 50 mL hexane/acetone (1:1, v:v) for 5 min. The results of method validation exhibited that the developed method can be used for quantitative detection of 11 OPEs, 13 PBDEs, 3 HBCDs and 5 Dechloranes in water samples. The method detection limits (MDLs) and limits of quantification (LOQs) are 0.4-26.2 pg/L and 1.5-87.4 pg/L for OPEs, 23.3-35.4 pg/L and 77.5-117.9 pg/L for HBCDs, 0.8-97.4 pg/L and 2.6-324.7 pg/L for PBDEs and 9.3-78.5 pg/L and 31.0-261.8 pg/L for Dechloranes, respectively. The method was successfully applied in lagoon maricultural areas in Hainan province, and the results showed that 4 OFRs were detected in almost all water samples. Total concentrations of 18 water samples were 1.89-39.97 ng/L for OPEs, 0.18-5.40 ng/L for PBDEs, ND-0.24 ng/L for HBCDs and 0.01-1.77 ng/L for Dechloranes, respectively. The optimized analytical method is highly sensitive and efficient with expectation to play an essential role in monitoring the ultra-trace organic pollutants and providing an effective risk assessment in ecological environment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要