谷歌浏览器插件
订阅小程序
在清言上使用

A multivariate modeling framework to quantify immune checkpoint context-dependent stimulation on T cells

CELL DISCOVERY(2022)

引用 1|浏览22
暂无评分
摘要
Cells receive, and adjust to, various stimuli, which function as part of complex microenvironments forming their “context”. The possibility that a given context impacts the response to a given stimulus defines “context-dependency” and it explains large parts of the functional variability of physiopathological and pharmacological stimuli. Currently, there is no framework to analyze and quantify context-dependency over multiple contexts and cellular response outputs. We established an experimental system including a stimulus of interest, applied to an immune cell type in several contexts. We studied the function of OX40 ligand (OX40L) on T helper (Th) cell differentiation, in 4 molecular (Th0, Th1, Th2, and Th17) and 11 dendritic cell (DC) contexts (monocyte-derived DC and cDC2 conditions). We measured 17 Th output cytokines in 302 observations, and developed a statistical modeling strategy to quantify OX40L context-dependency. This revealed highly variable context-dependency, depending on the output cytokine and context type itself. Among molecular contexts, Th2 was the most influential on OX40L function. Among DC contexts, the DC type rather than the activating stimuli was dominant in controlling OX40L context-dependency. This work mathematically formalizes the complex determinants of OX40L functionality, and provides a unique framework to decipher and quantify the context-dependent variability of any biomolecule or drug function.
更多
查看译文
关键词
Bioinformatics,Immunology,Life Sciences,general,Cell Biology,Stem Cells,Cell Culture,Cell Cycle Analysis,Cell Physiology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要