Realistic Kilonova Up Close

arxiv(2022)

引用 0|浏览5
暂无评分
摘要
Neutron star mergers are cosmic catastrophes that produce some of the most energetic observed phenomena: short gamma-ray bursts, gravitational wave signals, and kilonovae. The latter are optical transients, powered by radioactive nuclides which are synthesized when the neutron-rich ejecta of a disrupted neutron star undergoes decompression. We model this decompression phase using data from simulations of post-merger accretion disk winds. We use smoothed particle hydrodynamics with realistic nuclear heating to model the expansion over multiple scales, from initially several thousand km to billions of km. We then render a realistic image of a kilonova ejecta as it would appear for a nearby observer. This is the first time such a visualization is performed using input from state-of-the-art accretion disk simulations, nuclear physics and atomic physics. The volume rendering in our model computes an opacity transfer function on the basis of the physical opacity, varying significantly with the inhomogeneity of the neutron richness in the ejecta. Other physical quantities such as temperature or electron fraction can be visualized using an independent color transfer function. We discuss several difficulties with the ParaView application that we encountered during the visualization process, and give descriptions of our solutions and workarounds which could be used for future improvements.
更多
查看译文
关键词
realistic kilonova
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要