谷歌浏览器插件
订阅小程序
在清言上使用

Highly Conductive Charge Transport Layers Impair Charge Extraction Selectivity in Thin-Film Solar Cells

ADVANCED ENERGY AND SUSTAINABILITY RESEARCH(2023)

引用 0|浏览24
暂无评分
摘要
Charge selective interlayers are crucial in thin-film photovoltaics, such as organic and Perovskite solar cells. Charge transporting layers (doped and undoped) constitute perhaps the most important class of charge selective interlayers; however, it is not well understood how a charge transporting layer should be designed in order to ensure efficient extraction of majority carriers while blocking minority carriers. This work clarifies how well charge-transporting layers with varying majority carrier conductivities block minority carriers. We use the Charge Extraction by a Linearly Increasing Voltage technique to determine the surface recombination velocity of minority carriers in model system devices with varying majority carrier conductivity in the transporting layer. Our results show that transporting layers with high conductivity for majority carriers do not block minority carriers - at least not at operating voltages close to or above the built-in voltage, due to direct bi-molecular recombination across the transporting layer-absorber layer interface. We furthermore discuss and propose design principles to achieve selective charge extraction in thin film solar cells using charge transporting layers.
更多
查看译文
关键词
charge selective interlayers,surface recombination,thin-film solar cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要