Droplet-Based Microfluidic Preparation of Shape-Variable Alginate Hydrogel Magnetic Micromotors

NANOMATERIALS(2022)

引用 2|浏览7
暂无评分
摘要
This article introduces a facile droplet-based microfluidic method for the preparation of Fe3O4-incorporated alginate hydrogel magnetic micromotors with variable shapes. By using droplet-based microfluidics and water diffusion, monodisperse (quasi-)spherical microparticles of sodium alginate and Fe3O4 (Na-Alg/Fe3O4) are obtained. The diameter varies from 31.9 to 102.7 mu m with the initial concentration of Na-Alginate in dispersed fluid ranging from 0.09 to 9 mg/mL. Calcium chloride (CaCl2) is used for gelation, immediately transforming Na-Alg/Fe3O4 microparticles into Ca-Alginate hydrogel microparticles incorporating Fe3O4 nanoparticles, i.e., Ca-Alg/Fe3O4 micromotors. Spherical, droplet-like, and worm-like shapes are yielded depending on the concentration of CaCl2, which is explained by crosslinking and anisotropic swelling during the gelation. The locomotion of Ca-Alg/Fe3O4 micromotors is activated by applying external magnetic fields. Under the rotating magnetic field (5 mT, 1-15 Hz), spherical Ca-Alg/Fe3O4 micromotors exhibit an average advancing velocity up to 158.2 +/- 8.6 mu m/s, whereas worm-like Ca-Alg/Fe3O4 micromotors could be rotated for potential advancing. Under the magnetic field gradient (3 T/m), droplet-like Ca-Alg/Fe3O4 micromotors are pulled forward with the average velocity of 70.7 +/- 2.8 mu m/s. This article provides an inspiring and timesaving approach for the preparation of shape-variable hydrogel micromotors without using complex patterns or sophisticated facilities, which holds potential for biomedical applications such as targeted drug delivery.
更多
查看译文
关键词
droplet-based microfluidics, magnetic micromotors, hydrogel
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要