Raman Studies on Surface-Imprinted Polymers to Distinguish the Polymer Surface, Imprints, and Different Bacteria.

ACS APPLIED BIO MATERIALS(2021)

引用 6|浏览9
暂无评分
摘要
Molecularly imprinted polymers (MIPs) are widely used as robust biomimetic recognition layers in sensing devices targeting a wide variety of analytes including microorganisms such as bacteria. Assessment of imprinting success and selectivity toward the target is of great importance in MIP quality control. We generated Escherichia coli-imprinted poly(styrene-co-DVB) as a model system for bacteria-imprinted polymers via surface imprinting using a glass stamp with covalently immobilized E. coli. Confocal Raman Microscopy was successfully employed to visualize bacteria, imprints, and polymer and to distinguish them from each other. The method has proven highly feasible for assessing if imprinting had been successful. In addition, we developed a method for selectivity investigation of bacteria MIPs based on combining Confocal Raman Microscopy and Partial Least Squares Discriminant Analysis (PLS-DA). The Raman spectra of E. coli and Bacillus cereus were acquired on E. coli-imprinted poly(styrene-co-DVB) and used to establish a PLS-DA model for differentiating between the bacteria species. Model validation demonstrated a correct classification of 95% of Raman spectra, indicating sufficient accuracy of the model for future use in MIP selectivity studies. Simultaneous differentiation of 3 bacteria species (E. coli, B. cereus, and Lactococcus lactis) on E. coli-imprinted poly(styrene-co-DVB) proved more difficult, which might be due to the limited depth resolution of the confocal Raman microscope resulting in the presence of interfering signals from the polymer substrate. It might be possible to overcome this obstacle by selective enhancement of the Raman signals originating from bacteria surfaces, such as tip enhanced Raman spectroscopy.
更多
查看译文
关键词
molecularly imprinted polymers, Raman microscopy, partial least squares discriminant analysis, Escherichia coli
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要