谷歌浏览器插件
订阅小程序
在清言上使用

A Bacterial Secretosome for Regulated Envelope Biogenesis and Quality Control

Daniel W. Watkins, Sophie L. Williams,Ian Collinson

Microbiology(2022)

引用 3|浏览8
暂无评分
摘要
The Gram-negative bacterial envelope is the first line of defence against environmental stress and antibiotics. Therefore, its biogenesis is of considerable fundamental interest, as well as a challenge to address the growing problem of antimicrobial resistance. All bacterial proteins are synthesised in the cytosol, so inner- and outer-membrane proteins, and periplasmic residents have to be transported to their final destinations via specialised protein machinery. The Sec translocon, a ubiquitous integral inner-membrane (IM) complex, is key to this process as the major gateway for protein transit from the cytosol to the cell envelope; this can be achieved during their translation, or afterwards. Proteins need to be directed into the inner-membrane (usually co-translational), otherwise SecA utilises ATP and the proton-motive-force (PMF) to drive proteins across the membrane post-translationally. These proteins are then picked up by chaperones for folding in the periplasm, or delivered to the beta-barrel assembly machinery (BAM) for incorporation into the outer-membrane. The core hetero-trimeric SecYEG-complex forms the hub for an extensive network of interactions that regulate protein delivery and quality control. Here, we conduct a biochemical exploration of this 'secretosome' -a very large, versatile and inter-changeable assembly with the Sec-translocon at its core; featuring interactions that facilitate secretion (SecDF), inner- and outer-membrane protein insertion (respectively, YidC and BAM), protein folding and quality control (e.g. PpiD, YfgM and FtsH). We propose the dynamic interplay amongst these, and other factors, act to ensure efficient envelope biogenesis, regulated to accommodate the requirements of cell elongation and division. We believe this organisation is critical for cell wall biogenesis and remodelling and thus its perturbation could be a means for the development of anti-microbials.
更多
查看译文
关键词
bacterial secretion,cell division,envelope biogenesis,quality control,Sec-BAM complex,secretosome
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要