(Non)-projective bounds on gravitational EFT

arxiv(2023)

引用 0|浏览1
暂无评分
摘要
In this paper we study both projective and non-projective constraints on four-dimensional gravitational effective fields theories implied from unitarity, causality and crossing, assuming perturbative UV completions in $M_{\rm pl}$. We derive bounds on the Wilson coefficients of $R^3$ and $D^{2n}R^4$ from its dispersive representation, utilizing both numerical semi-definite programming and analytic geometry analysis. From the former, we derive projective bounds on ratios of couplings and observe accumulation point spectrum populating the boundary of the allowed region. For the latter we consider the non-projective geometry of the EFThedron, which we relate to the known $L$-moment problem in the literature. This allows us to move beyond positivity and incorporate the upper bound from unitarity of the imaginary parts of partial waves. This leads to sharp bounds on individual coefficients, which are of order unity when normalized with respect to the UV scale. Finally, the non-projective geometry also allows us to derive optimal bounds reflecting assumptions of low-spin dominance, improving previous results. We complement the analytic analysis with a simple linear programming approach that validates the bounds.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要