A Comparative Study of the Electrical and Electromechanical Responses of Carbon Nanotube/Polypropylene Composites in Alternating and Direct Current

SENSORS(2022)

引用 3|浏览8
暂无评分
摘要
The electrical and electromechanical responses of ~200 mu m thick extruded nanocomposite films comprising of 4 wt.% and 5 wt.% multiwall carbon nanotubes mixed with polypropylene are investigated under an alternating current (AC) and compared to their direct current (DC) response. The AC electrical response to frequency (f) and strain (piezoimpedance) is characterized using two configurations, namely one that promotes resistive dominance (resistive configuration) and the other that promotes the permittivity/capacitive contribution (dielectric configuration). For the resistive configuration, the frequency response indicated a resistive-capacitive (RC) behavior (negative phase angle, theta), with a significant contribution of capacitance for frequencies of 10(4) Hz and above, depending on the nanotube content. The piezoimpedance characterization in the resistive configuration yielded an increasing impedance modulus (|Z|) and an increasing (negative) value of theta as the strain increased. The piezoimpedance sensitivity at f = 10 kHz was ~30% higher than the corresponding DC piezoresistive sensitivity, yielding a sensitivity factor of 9.9 for |Z| and a higher sensitivity factor (~12.7) for theta. The dielectric configuration enhanced the permittivity contribution to impedance, but it was the least sensitive to strain.
更多
查看译文
关键词
carbon nanotubes, electrical properties, alternating current, electromechanical, piezoimpedance, piezoresistivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要