谷歌浏览器插件
订阅小程序
在清言上使用

Testing Precision Limits of Neural Network-Based Quality Control Metrics in High-Throughput Digital Microscopy

Pharmaceutical Research(2022)

引用 4|浏览18
暂无评分
摘要
OBJECTIVE:Digital microscopy is used to monitor particulates such as protein aggregates within biopharmaceutical products. The images that result encode a wealth of information that is underutilized in pharmaceutical process monitoring. For example, images of particles in protein drug products typically are analyzed only to obtain particle counts and size distributions, even though the images also reflect particle characteristics such as shape and refractive index. Multiple groups have demonstrated that convolutional neural networks (CNNs) can extract information from images of protein aggregates allowing assignment of the likely stress at the "root-cause" of aggregation. A practical limitation of previous CNN-based approaches is that the potential aggregation-inducing stresses must be known a priori, disallowing identification of particles produced by unknown stresses.METHODS:We demonstrate an expanded CNN analysis of flow imaging microscopy (FIM) images incorporating judiciously chosen particle standards within a recently proposed "fingerprinting algorithm" (Biotechnol. & Bioeng. (2020) 117:3322) that allows detection of particles formed by unknown root-causes. We focus on ethylene tetrafluoroethylene (ETFE) microparticles as standard surrogates for protein aggregates. We quantify the sensitivity of the new algorithm to experimental parameters such as microscope focus and solution refractive index changes, and explore how FIM sample noise affects statistical testing procedures.RESULTS & CONCLUSIONS:Applied to real-world microscopy images of protein aggregates, the algorithm reproducibly detects complex, distinguishing "textural features" of particles that are not easily described by standard morphological measurements. This offers promise for quality control applications and for detecting shifts in protein aggregate populations due to stresses resulting from unknown process upsets.
更多
查看译文
关键词
Artificial intelligence analysis,Protein therapeutics,Digital microscopy,Quality control,Statistical diagnostics,Convolutional Neural Networks (CNNs),Flow Imaging Microscopy (FIM),Protein surrogates
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要