Network resilience in the aging brain

arxiv(2022)

引用 0|浏览24
暂无评分
摘要
Degeneration and adaptation are two competing sides of the same coin called resilience in the progressive processes of brain aging or diseases. Degeneration accumulates during brain aging and other cerebral activities, causing structural atrophy and dysfunction. At the same time, adaptation allows brain network reorganize to compensate for structural loss to maintain cognition function. Although hidden resilience mechanism is critical and fundamental to uncover the brain aging law, due to the lack of datasets and appropriate methodology, it remains essentially unknown how these two processes interact dynamically across brain networks. To quantitatively investigate this complex process, we analyze aging brains based on 6-year follow-up multimodal neuroimaging database from 63 persons. We reveal the critical mechanism of network resilience that various perturbation may cause fast brain structural atrophy, and then brain can reorganize its functional layout to lower its operational efficiency, which helps to slow down the structural atrophy and finally recover its functional efficiency equilibrium. This empirical finding could be explained by our theoretical model, suggesting one universal resilience dynamical function. This resilience is achieved in the brain functional network with evolving percolation and rich-club features. Our findings can help to understand the brain aging process and design possible mitigation methods to adjust interaction between degeneration and adaptation from resilience viewpoint.
更多
查看译文
关键词
aging,resilience,brain,network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要