谷歌浏览器插件
订阅小程序
在清言上使用

Thiotetrelates Li2ZnXS4 (X = Si, Ge, and Sn) As Potential Li-Ion Solid-State Electrolytes

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 3|浏览4
暂无评分
摘要
A novel inorganic solid-state electrolyte (ISSE) with high ionic conductivity is a crucial part of all-solid-state lithium-ion (Li-ion) batteries (ASSLBs). Herein, we first report on Li2ZnXS4 (LZXS, X = Si, Ge, and Sn) semiconductor-based ISSEs, crystallizing in the corner-sharing tetrahedron orthorhombic space group, to provide valuable insights into the structure, defect chemistry, phase stability, electrochemical stability, H2O/ CO2 chemical stability, and Li-ion conduction mechanisms. A key feature for the Li-ion transport and low migration barrier is the interconnected and corner-shared [LiS4] units along the a-axis, which allows Li-ion transport via empty or occupied tetrahedron sites. A major finding is the first indication that Li-ion migration in Li2ZnSiS4 (LZSiS) has lower energy barriers (similar to 0.24 eV) compared to Li2ZnGeS4 (LZGS) and Li2ZnSnS4 (LZSnS), whether through vacancy migration or interstitial migration. However, LZGS and LZSnS exhibit greater H2O/CO2 stability compared to LZSiS. The novel framework of LZXS with relatively low Li-ion migration barriers and moderate electrochemical stability could benefit the ASSLB communities.
更多
查看译文
关键词
Li2ZnXS4,defect chemistry,stability,lithium-ion conductivity,sulfide solid-state electrolyte,all-solid-state lithium-ion battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要