Inhaled diesel exhaust particles result in microbiome-related systemic inflammation and altered cardiovascular disease biomarkers in C57Bl/6 male mice

PARTICLE AND FIBRE TOXICOLOGY(2022)

引用 4|浏览9
暂无评分
摘要
Background The gut microbiota plays a vital role in host homeostasis and is associated with inflammation and cardiovascular disease (CVD) risk. Exposure to particulate matter (PM) is a known mediator of inflammation and CVD and is reported to promote dysbiosis and decreased intestinal integrity. However, the role of inhaled traffic-generated PM on the gut microbiome and its corresponding systemic effects are not well-characterized. Thus, we investigated the hypothesis that exposure to inhaled diesel exhaust particles (DEP) alters the gut microbiome and promotes microbial-related inflammation and CVD biomarkers. 4–6-week-old male C57Bl/6 mice on either a low-fat (LF, 10% fat) or high-fat (HF, 45% fat) diet were exposed via oropharyngeal aspiration to 35 μg DEP suspended in 35 μl saline or saline only (CON) 2x/week for 30 days. To determine whether probiotics could prevent diet or DEP exposure mediated alterations in the gut microbiome or systemic outcomes, a subset of animals on the HF diet were treated orally with 0.3 g/day (~ 7.5 × 10 8 CFU/day) of Winclove Ecologic® Barrier probiotics throughout the study. Results Our results show that inhaled DEP exposure alters gut microbial profiles, including reducing Actinobacteria and expanding Verrucomicrobia and Proteobacteria. We observed increased circulating LPS, altered circulating cytokines (IL-1α, IL-3, IL-13, IL-15, G-CSF, LIF, MIP-2, and TNF-α), and CVD biomarkers (siCAM, PAI-1, sP-Selectin, thrombomodulin, and PECAM) in DEP-exposed and/or HF diet mice. Furthermore, probiotics attenuated the observed reduction of Actinobacteria and expansion of Proteobacteria in DEP-exposed and HF-diet mice. Probiotics mitigated circulating cytokines (IL-3, IL-13, G-CSF, RANTES, and TNF- α) and CVD biomarkers (siCAM, PAI-1, sP-Selectin, thrombomodulin, and PECAM) in respect to DEP-exposure and/or HF diet. Conclusion Key findings of this study are that inhaled DEP exposure alters small intestinal microbial profiles that play a role in systemic inflammation and early CVD biomarkers. Probiotic treatment in this study was fundamental in understanding the role of inhaled DEP on the microbiome and related systemic inflammatory and CVD biomarkers.
更多
查看译文
关键词
Diesel particulate matter, Gut microbiome, Probiotics, Cardiovascular disease, Inflammation, High fat diet, Endotoxin, Bifidobacterium, Lactobacillus, Lactococcus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要