Integration of genomics, transcriptomics and metabolomics identifies candidate loci underlying fruit weight in loquat

HORTICULTURE RESEARCH(2022)

引用 11|浏览10
暂无评分
摘要
Fruit weight is an integral part of fruit quality and directly influences the commodity value and economic return of fruit crops. Despite the importance of fruit weight, its underlying molecular mechanisms remain understudied, especially for perennial fruit tree crops such as cultivated loquat (Eriobotrya japonica Lindl.). Auxin is known to regulate fruit development, but its role and metabolism during the development of loquat fruit remain obscure. In this study, we used a multi-omics approach, integrating whole-genome resequencing-based quantitative trait locus (QTL) mapping with an F-1 population, population genomics analysis using germplasm accessions, transcriptome analysis, and metabolic profiling to identify genomic regions potentially associated with fruit weight in loquat. We identified three major loci associated with fruit weight, supported by both QTL mapping and comparative genomic analysis between small- and large-fruited loquat cultivars. Comparison between two genotypes with contrasting fruit weight performance by transcriptomic and metabolic profiling revealed an important role for auxin in the regulation of fruit development, especially at the fruit enlargement stage. The multi-omics approach identified homologs of ETHYLENE INSENSITIVE 4 (EjEIN4) and TORNADO 1 (EjTRN1) as promising candidates for the control of fruit weight. Three single nucleotide polymorphism (SNP) markers were also closely associated with fruit weight. Results from this study provide insights into the genetic and metabolic controls of fruit weight in loquat from multiple perspectives. The candidate genomic regions, genes, and sequence variants will facilitate our understanding of the molecular basis of fruit weight and lay a foundation for future breeding and manipulation of fruit weight in loquat.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要