谷歌浏览器插件
订阅小程序
在清言上使用

Microalgae As a Potential Sustainable Solution to Environment Health.

Chemosphere(2022)

引用 1|浏览24
暂无评分
摘要
Cyanobacteria such as Spirulina platensis secretes numerous biomolecules while consuming CO2 for photosynthesis which can reduce the environmental pollution as it can also be grown in wastewater. These biomolecules can be further processed in numerous pathways such as feed, fuel, pharmaceuticals, and nutraceuticals. This study aims to screen the potential molecular mechanisms of pigments from cyanobacteria as antidiabetic type-2 candidates through molecular docking. The activities of the test compounds were compared to commercial diabetic drugs, such as acarbose, linagliptin and polydatin. The results indicated that the binding affinity of pheophytin, β-carotene, and phycocyanobilin to α-amylase were 0.4, 2, and 2.6 kcal/mol higher than that of acarbose with α-amylase. Binding affinity between pheophytin, β-carotene, and phycocyanobilin with α-glucosidase were found to be comparable, which resulted 1.2, and 1.6 kcal/mol higher than that of acarbose with α-glucosidase. Meanwhile, binding activity of β-carotene and phycocyanobilin with DPP-IV were 0.5 and 0.3 kcal/mol higher than that of linagliptin with DPP-IV, whereas pheophytin, β-carotene, and phycocyanobilin with Glucose-6-phosphate dehydrogenase (G6PD) were 0.2, 1, and 1.4 kcal/mol higher from that of polydatin with G6PD. Moreover, pheophytin, β-carotene and phycocyanobilin were likely to inhibit α-amylase, α-glucosidase, and DPP-IV competitively, while uncompetitively for G6PD. Thus, the integration of molecular docking and experimental approach, such as in vitro and in vivo studies may greatly improve the discovery of true bioactive compounds in cyanobacteria for type 2 diabetes mellitus drugs and treatments.
更多
查看译文
关键词
Cyanobacteria,Enzyme inhibitor,Molecular docking,Pigments
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要