In-Situ Synthesis of Carbon-Encapsulated Atomic Cobalt as Highly Efficient Polysulfide Electrocatalysts for Highly Stable Lithium-Sulfur Batteries.

SMALL(2022)

引用 36|浏览5
暂无评分
摘要
Lithium-sulfur (Li-S) batteries have been considered as one of the most promising electrochemical energy storage systems because of their high energy density. However, a series of issues severely limit the practical performances of Li-S batteries such as low conductivity, significant volume change, and shuttle effect. The hollow carbon spheres with huge voids and high electrical conductivity are promising as sulfur hosts. Unfortunately, the nonpolar nature of carbon materials cannot prevent the shuttle effect effectively. In this case, the atomic cobalt is introduced to a nitrogen-doped hollow carbon sphere (ACo@HCS) through polymerization and controlled pyrolysis. The atomic cobalt dopants not only act as active sites to restrict the shuttle effect, but also can promote the kinetics of the sulfur redox reactions. ACo@HCS acting as sulfur host exhibits a high discharge capacity (1003 mAh g-1 ) at a 1.0 C rate after 500 cycles, and the corresponding decay rate is as low as 0.002% per cycle. This exciting work paves a new way to design high-performance Li-S batteries.
更多
查看译文
关键词
atomic catalysts, carbon-encapsulation, cathodes, kinetics, Li-S batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要